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i From this annlysis, one has to solve a system of ODE's for the
.: parameters of the soliton.

) This has becen done on the VAX. We have also integrated numerically the
‘t' full problem to see the effects of radiation,.
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His work has been concentrated on solving numerically the Ginzburg-Landau

1 equation, sometimes referred to as the Newell-Whitehead cquation, which has
g‘ many physical applicatons. The equation is:
K

. . . e ®
& o (Y F Y)W = xd - (Rr + Bi)W &
: "t r i hxx TOXE '
0 Thne boundary conditions are periodic.

Different parameter values are used to check the stability of the x-
" independent and the soliton solutions. The equation is integrated in time
using a pseudo-spectral method. The linear part of the equation is solved
for nalf time step using the FFT (the Fast Fourier Transform}. The

" nonlinear part is solved exactly for the remaining nalf-time step, Data is
w collected and analyzed.
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Christopher Jones

g Current Rescarch

There are two major projects that form a focus for my research at
the moment. The firsthis a stability problem for travelling waves in a
b fast-slow system of reaction-diffusion equations. The travelling wave is
X constructed by piecing together solutions of reduced problems and the
question is to understénd how the stability information for these reduced

problems is put together to determine the stability of the full problem.

L XA,

This is related to my earlier work on the FitzHugh-Nagumo equations but
significantly more difficult as the underlying phase space dimension is
4 rather than 3. R, Gardner of the University of Massachusetts proved

P the existence of the waves and the extra space dimension translates into
non-trivial behavior in the slow part of the sysiem. The understanding
of the effect of this new feature on the stability problem is quite
subtle. Gardner and I are working on this problem jointly.

The second problem relates to standing wave solutions of the nonlinear
Schrodinger equations. I have proved an instability result and applied
it to nonlinear optical waveguides with Moloney. I am currently involved
in extending the results to a wider class of waves. But what is more

interesting is that the results have suggested some striking connections

X NS

between the methods of proof used to find the waves in the first place,
. namely, the dynamical systems approach (as developed by Kupper and myself)
and the variational approach (as develcped by Strauss and Berestycki-Lions).
These techniques have up until now developed independently and a relationship

between them will, I believe, open up the possibility of exciting new results.
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Instability of Standing Waves in Nonlinear Optical Waveguides
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.:: Abstract
(X
A new mathematical instability technique 1s presented and applied to
V;i determine the stability properties of a physically important class of
rd
N
4
Aa standing waves in nonlinear planar optical waveguides. The method is
N
_ {llustrated by a case where soliton perturbation techniques or variational
Fg
C.
'f:' methods are inapplicable.
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- New Class of Instabilities in Passive Optical Cavities
Y D. W. McLaughlin, J. V. Moloncy, and A. C. Newell
& Applied Mathematics Program and Optical Science Center, University of Arizona, Tucson, Arizona 85721
:‘ {Received 2 July 1984)
. In this Letter we show that the fixed points of the lkeda map are more unstable to perturbations
with a short-scale transverse structure than to planc-wave perturbations. We correctly predict the
"' most unstable wavelength, the critical intensity, and the growth ratés ot tnese disturbances. Our
) result establishes that, for a large class of nonlinear waves, spatial structure is incvitable and drasti-
1 X cally alters the route to chaos. In an optical cavity the consequence is that the period-doubling cus-
\ \ cade is an unlikely scenario for transition to optical chaos. .
» »
} PACS numbers: 42.65.—k
9 In this Letter, we announce a new and unexpected in which diffraction effecis are neglected. The purpose
[ result, an instability whose consequences have ramifi- of this Letter is to point out that this assumption is not
:: cations for a large class of nonlinear wave problems justified even for cases in which the input beam is very

N whose dynamics can be described by envelope equa-
i tions. Specifically, it deals with periodically forced
field equations of the universal nonlinear Schrédinger
type. This instability changes the whole character of
the route of the system from a simple to a turbulent

s

1]

: state. It generates spatial structure, and the subse-
: quent onset of chaotic behavior completely bypasses
-] the period-doubling scenario which is relevant if spa-
tial structure is ignored. Moreover, the scenario which

o does emerge has a universal character cf its own. Ex-
>~ amples of this phenomena are found in optics, either
-;. in the transmission along optical fibers or in optically
. bistable cavities.! It is in the latter context that this

h work is presented.

In this problem we are interested in the long-time
state of a continuous laser signal which is recircutated
through a nonlinear medium. In examining on¢ par-
ticular manifestation of optical bistability (a ring cavity

o>,
LA

v
'l.l

slowly varying in the transverse direction x(x,y) and
the Fresnel number is large. The reason is that the
fixed point solutions of the plane-wave map (1) are
more unstable to perturbations with a short-scale
transverse structure than they are to perturbations
with plane-wave structure. To emphasize this point,
the numerical experiment discussed in this Letter is
run at a parameter value p for which the fixed points
of the lIkeda map are stable!

This discovery has important ramifications. First, it
shows that the initial bifurcation of the system intro-
duces an extra dimension into the problem, a short-
wave transverse excitation of temporal period two.
This extra dimension affects significantly the subse-
quent behavior of the system. As the stress parame-
ters are raised, no period-doubling cascades into chaos

o with Kerr nonlinearity), Ikeda? wrote a map expressing @
o the (complex) amplitude g,,, of the electric field E o

’ on the (n+1)st pass through the cavity as a function
P of electric field amplitude on the nth pass; 191 c
'n: g,,+l=a+Rg,,exp[1d>0+lpLN([)/2] (1) 8

-, In (1), ais the amplitude of the input field, R < 1 the 2 2

o reflectivity of the mirrors, ¢¢ the detuning parameter,

pis (effectively) the length of the nonlinear medium,

- and N(g,g’) measures its nonlinear response. Two
*-: cases are usually studied: (1) the saturable medium,
o N(D=—(1+2D"", (2) the Kerr medium, N(I)
= = — 142/, which is the small intensity limit of the

saturable case. Equation (1), called the lkeda map, is

2] a two-dimensional invertible map and exhibits a

= variety of behavior which is already well documented N ,
. in the literature.>* In various parameter ranges (the 0065 10 15 20
f‘_ two parameters which are varied are a and p), one \d
o finds multiple fixed points (see Fig. 1) and sequences FIG. 1. (a) The multivalued response of the amplitude of

. of period-doubling bifurcations leading to chaotic at- the fixed point lg| vs a at fixed values of p for the lkeda
: tractors. map. (b) A graph of b(u,7) vs VT =~y K for =~ pl = pgg®

! The map (1) invokes the plane-wave approximation equal to 0.11 and 0.24.
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'/S/ability of nonlinear stationary waves guided by a thin film bounded

R by nonlinear-megia _
Y A f” Moloney !
Y EH14 44S. Scotlznd

h_;s:cs Departmeny! Heriot Watt University, Riccarton, Edinburgh

T, C. T. Seaton, and G. I. Stegeman
Optical Sciences Center and Arizona Research Laboratories, University of Arizona, Tucson, Arizona 85721

. (Received 2 December 1985; accepted for publication 3 February 1986)
o

The stability of stationary, TE,-type, nonlinear, thin-film guided waves was in\ estigated
numerically for both symmetric and asymmetric planar waveguides with nonhnear cladding and

-
v

R}
;S
"
o Unique properties'™” have been predicted for waves n{|W(x2) Pl =n’ ~a, ! Wixz)*
guided by thin films when one or more of the guiding media =12 (jx|»d) (2a)
,':’ exhibit a ficld-dependent refractive index. Self-focusing '
Yy bounding media lead to multiple new branches with power ~ 20d
3} thresholds. as well as field distributions \f\'hqse max.ima shift n[IW(xz2)[') =n" (xi<d). (2b)
Wy frro'rg (!};erﬁl?‘ tt}?is[hee:r(r))u?f";lga n:)eezila i:;:ltilﬁnecdrz?:;gezoz{ Substituting into the nonlinear wave equation and retaining
] er. act, e n & cel- . . .
lent candidate forgall-optiZal sswitching with our withoyr O™ the first derivative of W(x.2) with respect to z leads t0
) bistability.*~” To date, however, theoretical analysis has been 2,-’3;\-“3”/("’2)'4_ g-Bixz) ki
‘o based solely on steady-state solutions to a nonlinear wave gx*
X equation which contains an intensity-dependent refractive X{B: = n[|Wixz) |}W(x,2)=0. (3)
N index. The salient question ts whether these wave solutions Analytical stability analysis of Eq. (3) is complicated by
are stable on propagation, and the consequences of possible 0 1ot thatitis a pertial differential equation and, further-
e luns(at;le {F%xons'to prtf)p]osed devxcgs. foﬁr t'}:e rEIZ[,ed lgr(;b' m.ore, is a Hamilton:an system. The usual stability analysis
:’ ;TOS“ }S\Zs- ;])(C):S";i °t ti:::};‘;’gsz ‘]:el:ta’;lleef(r;}ed?}dﬂo O(; for dissipative dynamical svstems does not apply (unless one
o (;] P Sh ntha dgisth a deoerdont ref ‘,> deliberately introduces losses into the problem). One reason
4 where Pis the power and S is the power-dependent refractive - i e 1o e o
:. e Numerri)cal ropagation ls)tudies 0? nonlinear waves for the difficulty in studving the stability of Eq. (3) is that 1
;': index. | propag ' ' many of the eigenvalues of the linearization of (3) lie on the ‘
N guided by the mte{face betwele(r;]a self-focusmg anda po“f_f; imaginary axis which is precisely the condition for instability ’
s independent medium by Akhmediev and co-Wf)rkers in a dissipative dynamical system. Although it has been pos- |
] have led to a similar conclusion. Recently, a theory based on sible"! to perform a s:ability analysis for TE,, with m = 0, it ,
r e 1 T : = - L m =Y
:t- phase p"f;'ac;‘; has :fzer;lde\;)elopzdd lt;or t}]];':tabﬂ,“y ode‘_I-%“ is necessary to proceed numencally for m=0. First, the !
d waves guided Oy a thin fiim bounded by se' -locusing m‘e 1, steady-state solutions with H’(x,2)— W(x) were obtained in ;
: X and the important coqclusnon of that work is that the waves the usual way"’ to ootain a field solution corresponding to a lI
- are unstable on negatively sloped branches (4P /df3 <0) of particular point on one of the nonlinear guided wave solu- i
. the nonlinear dispersion curve, and that they are stable on tion branches. This distribution was then assumed to be }
: 2y posmvely slopeq regions prowdcd that self-focusing occurs launched at z = 0 and Eq. (3) was solved numerically for i
" in only one nonlinear medium. In this letter we report a test
. 2 of this conclusion via a numerical investigation of the stabil- 7
o ity of TE,, solutions for films bounded by self-focusing me- L‘
., ) dia. 0 X

The geometry analyzed consists of a film (ix! <d, re-
fractive index n,) bounded by two nonlinear media with low

substrate layers. It is found that large regions of the dispersion curves are unstable at high powers.

I——Zd—j

b, power indices n, and n,, as shown in Fig. 1. Since the numeri-

o1 cal analysis is performed in the slowly varying phase and . )

) amplitude approximation, we write the optical field as n,2+c1|E| g nlvy ol
"

E(r) = {W(x.2)e"® " +ce., (N

where Fis the effective guided wave index. k, = w/c and the
variation in the amplitude term H'(x.z) along the propaga-
tion direction z is assumed to be small over one wavelength.

i,
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3, The refractive index in the various media is given by FIG | Nonhnear waves. 2: zecmetry studied for wave stabihity
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Chaos and Turbulence; is there a
connection?

by .

Alan C. Newell*

Department of Mathematics
University of Arizona
Tucson, Arizona 85721

Abstract. 1In this essay we discuss the relation of chaos, which is
the unpredictable behavior associated with finite systems of ordinary
differential and difference equations, and turbulence, which is the
unpredictable behavior of solutions of infinite dimensional, nonlinear
partial differential equations. The evidende that there is some
connection, at least in certain regimes of parameter space, is
sufficiently convincing to provide the motivation to search for
analytical means for reducing the governing partial differential
equations to either a finite system of ordinary differential equations
or a much simpler partial differential equation of universal type. A
successful reduction scheme must capture the spatial structure of the
dominant modes accurately and we suggest ways of finding these
structures ia certain limiting situations. Five such schemes are
presented and, in each case, the approximation is related in some way
to the presence of a small parameter, near critical, nearly
integrable or nearly periodic. One of these reductions leads to the
complex Ginzburg-Landau equation, which has universal character, and
its importance is stressed. In connection with this equation, we
introduce the terms "wimpy" turbulence and "macho" turbulence to
connote the crucial differences between the behavior of its solution
in one and two space dimensions, a difference which has much in common
with the contrast between two and three dimensional high Reynolds
number flows because of vorticity production. In the final section,
several ideas concerning the nature of high Reynolds number, fully
developed turbulence are presented and the possible roles of singular
solutions and "fuzzy" attractors are discussed. Throughout the essay,
we argue that before much new progress is made, one has to understand
the onset of spatial chaos, that is, the transition from a spatially
regular state (possibly with a chaotic temporal behavior) to one in
which the spatial power spectrum is broadband. This question is a
major focus of our present research program.

This contribution is dedicated to the memory of Dick DiPrima, a
good friend and long time colleague who left us too soon.

Supported by NSF - DMS-8403187, AFOSR - 83-0227, Army - DAAG-29-85-K0091,
ONR Physics - N00014-84-K-0420, ONR Engineering - N00014-85-K~0412.
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The geometry of the Hill equation and of the Necumann system

By N. M. Ercoranit anp H. FrascHkA

Department of Mathematics, The Unwersity of Arizona, Tucson, Arizona 85721, U.S.A.

Let there be given a finite-gap operator L = d?/dx?+ ¢ and its Baker function ¢ (x, p),
which 1s analytic for p on a certain hyperelliptic curve C. It is shown that a sequence
of Backlund transformations maps C to a projective space. This embedding can be
interpreted as a matrix representation of the Hill equation by the Neumann system
of constrained harmonic oscillators. The image curve, C’, lies on a rational ruled
surface; the structure of this surface is explained by use of ideas due to Burchnall &
Chaundy (Proc. R. Soc. Lond. A 118, 557-583 (1928)). Baker functions and Backlund
transformations are then used 1o define a (many-to-many) correspondencc between
effective divisors on the curve C and points lying on a quadric, or in the intersection
of two or more quadrics. This relates the theory of the Hill equation to earlier work
of Knorrer, Moser and Reid. It is then shown that the Kummer image of the Jacobian
of C can be realized as a hypersurface in the space of momentum variables of the
Neumann system. Further projects, such as extensions to non-hyperelliptic curves, are
outlined.

-

1. INTRODUCTION

A differential operator L == D%+ ¢(x), D = d/dx, is said to be ‘finite-gap’ il it commutes with
a differential operator B of odd order, [L, B] = 0. A ‘finite-gap potential’ ¢(x) is therefore a
time-independent, or stationary, solution of an equation ¢L/0¢ = [B, L] in the Korteweg-de
Vries hierarchy. Because L and B commute, they have a common eigenfunction

Ly = Ey,
By = Ry.
The eigenvalues £, R are known to be related by an algebraic equation

2j+1

[T (£—¢), (1)

j=
and the common eigenfunction y (the ‘Baker function’) is an analytic function on the Riemann
surface (1) or, equivalently, a holomorphic scetion of a certain line bundle on (1). Until now,
the theory of finite-gap operators has drawn mostly on the analytical aspects of Riemann
surfaces and on their abstract, intrinsic gcometry.

Our aim in this paper is to explain some of the extrinsic propertics of the curves, line bundles,
and isospectral tori (Jacobians) when those are embedded as concrete objects in a projective
space.

There are several reasons for studying gcometric realizations of the finite-gap operator theory.
The classical theory of curves and Jacobians is very beautiful, and an interesting statement about
abstract curves and line bundles should be worth repeating about concrete representations,
Furthermore, when one integrable system, like the stationary Lax equation [L,B] = 0, is

t Permanent address: Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S.A.
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THE SHAPE OF STATIONARY DISLOCATIONS

D. MEIRON 'and A.C. NEWELL

Department of Mathematics, Universuv of Arizona, Tucson, AZ 83721, US4

Recerved 21 October 1985 aecepted for publication 25 October 1985

1t s shown that the structure of the stationary disfocations which occur i a wide variety of patterns in nonequilibrium

svalems s ginven by a self-similar solution of the universal Cross - Newell equation.

There has been a tremendous resurgence of interest
lately in the structure and properties of symmetry
breaking instabilities in driven systems far from equi-
librium. The planforms and patterns which emerge
from these instabilities are observed in a wide varicty
of physical situations. from convection in fluids, in
liquid crystals and in binary mixtures to the solidifi-
cation processes in undercooled liquids. Of particular
interest are patterns which form in large aspect ratio
systems; for example. the Rayleigh--Bénard convec-
tion of a Boussinesq fluid {11 a box wide enough to
contain many rolls. Although for certain parameter
ranges and in infinite horizontal geometries, there
exist stable, tully nonlinear, spatially periodic solu-
tions of the Oberbeck — Boussinesq equations

ulx. t)=fl0,A.R), (1)

which correspond to a field of intimitely long. straight,

parallel rolls. the patterns which are typically seen
are much more complicated. involving patches of
curved rolls, defects such as roll dislocations and
grain boundaries. In an effort to treat the statics and
slow dynamics of these patterns, Cross and Newell
{1] developed a theory which averages over the de-
tailed local structure of the rolls and concentrates on
the global and universal properties of the pattern it-
self. The starting point of the theory is the existence
and stability of the solution (1) representing the
underlying roll structure. Here fis 2 periodic in the

" Department of Apphed Mathematies. CalTech, Pasadena.
CA UL USA

0.375-9601/85/5 03.30 © Elsevier Science Publishers B.V

(North-Holland Physics Publishing Division)

phase 0 whose gradient is the constant wavevector
k. The periodicity demand gives rise to a relation
(cquivalent to the frequency dependency on ampli-
tude in nonlinear oscillators)

ok.A.R)=0 , (2)

between the wavenumber k = |k|, the amplitude 4
and the stress parameter R which in the case of con-
vection is the Rayleigh number. The appearance of
the modulus of k reflects the rotational symmetry.
The regions of stability of these solutions in the R k
plane have been mapped out by Busse [2] (the Busse
balloon).

The Cross— Newell theory develops a universal
phase equation for the slowly changing wavevector &,
a change necessitaied by the influence of distant, but
finitely distant, horizontal boundaries to which the
roll axis is perpendicular (if the thermal contact be-
tween wall and fluid is good). For order one values
of R = R (R, is the transition value at which rolls

first appear), the amplitude is still determined algebrai-

cally in terms of the phase gradient by (2). In the ab-
sence of the mean drift effect, which we do not con-
sider here, the phase equation is

7(k)8, + V(kB(k)) + F(k) (D D4 + D,D| )4

+..=0, (3

where the functions 7(k) > 0, Blk) and F(k) are cal-
culated easily from the particular model of interest
{see ref. [1]) and the operators Dy and D, are 2k-V
+V-kand V2, respectively. The function B(k) always
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AN APPLICATION: THE ROLL-UP OF A FINITE VORTEX LAYER

i,.‘l )

&
$. The evolution and regularity of vorticity distributions with
I.‘.

35 varyinyg degrees of smoothness are of yreat interest to those who

Ky study the Euler eqguations of fluid flow. A periodically perturbed

)

€
W , ) . i
gs vortex sheet, for example, is now widely believed to acquire a
AN

\ i . ) i
:k: curvature singularity in finite time. Using the methods developed in
34 Chapters 2 and 3 for the highly accurate application of boundary
;ﬁj inteyral methods to multiply connected domains, the regularity of a
Mo . .
' thin, periodic layer of constant vorticity is investigated
. numerically. Numerical results suyyest that, like the vortex sheet,
o .
E? the interfaces develop a curvature singularity, but now only in
'
e infinite time.
KX
iﬁ 1. Background
Q"
’3“ The simplest model of a niyh Reynolds number shear layer 1S a
",
ol surface of discontinuity, or vortex sheet, between two shearing,
;ﬁ inviscid, irrotational fluids as pictured schematically in Figure 11.
7 The instability of such an interface is prototypic and is the well-
o known Kelvin-Helimholtz instability. For simplicity, assume the fluid
‘S is of uniform density, and that u - tUj as y =+ te. Then the
"\f
:3 linear evulution of a normal mode of amplitude A(k,t) and wave
A )
& i number Kk is yiven by
L
4i
R |
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ORNER PRESERVING APPROXIMATIONS TO SUCCESSIVE
DERIVATIVES OF PERIODIC FUNCTIONS

BY ITERATED SPLINES

b : M. J. Shelley

and

G. R. Baker
Department of Mathematics
University of Arizona
Tucson, Arizona 85721
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North-Holland, Amsterdam

CHAOS AND COHERENT STRUCTURES IN PARTIAL DIFFERENTIAL EQUATIONS

Alejandro ACEVES, Hatsuo ADACHIHARA, Christopher JONES, Juan Carlos LERMAN,

David W. McLAUGHLIN, Jerome V. MOLONEY* and Alan C. NEWELL
Applied Mathematics Program, University of Arizona, Tucson, AZ 86721, USA

This paper addresses the possible connections between chaos, the unpredictable behavior of solutions of finite dimensional
svstems of ordinary differenuial and difference equations and turbulence. the unpredictable behavior of solutions of partial
differential equations. It is dedicated to Martin Kruskal on the occasion of his 60th birthday

1. Introduction
The chaos that occurs in p.d.e.’s
cannot be fathomed by legalese
so we apply Occam’s razor
and using a laser
study structures in ring cavities

An appealing idea of modern dynamics is that
the complicated and apparently stochastic time
behavior of large and even infinite-dimensional
nonlinear systems is in fact a manifestation of a
deterministic flow on a low-dimensional chaotic
attractor. If the system is indeed low dimensional,
it is natural to ask whether one can identify the
physical characteristics such as the spatial struc-
ture of those few active modes which dominate the
dvnamics. Our thesis is that these modes are closely
related to and best described in terms of a. ymptot-
ically robust, multiparameter solutions of the non-
linear governing equations. We find it hard 1o
define this robust nature precisely. but loosely
speaking the idea is that these solutions are very
stable and resilient asymptotic states. They may be
coherent lumps like solitons and solitary waves.
They may have the form of coherent wave packets.
They may have self-similar form. They need not
necessarily be the asymptotic states which develop
as ¢ tends to infinity; structures which develop

*Permanent address. Dept of Physics, Henot-Watt Univer-
wity, BEdinburgh, EH1 4AS, UK

singularities in finite ime like those involved in the
collapse of Langmuir waves or in filamentation in
nonlinear optics are also candidates. For example,
singular solutions of the Euler equations may be
useful in understanding the behavior of the
Navier-Stokes equations at high Reynolds num-
bers. Singular solutions like defects and disloca-
tions certainly do play important roles in the
pattern formations arising in continuum and con-
densed matter physics. The key idea is that each of
these structures is a natural asymptotic state that,
by virtue of the various force balances in the
governing equations, develops an identity which
does not easily decay or disperse away.

One can envision two types of chaos occurring.
The first is a phase or weak turbulence which
arises when there is an endless competition be-
tween cqually resilient, localized coherent struc-
tures which are infinite time asymptotic states and
which are initiated at random at various parts of
the physical domain. Examples of this type of
turbulence are solitary waves in the one-dimen-
sional complex envelope equation, Rayleigh-
Bénard roll patterns with different orientations
and the oscillatory skew varicose states in low
Prandtl number convection. It is to be expected
that such dynamics may be low dimensional. The
second type of chaos is much more dramatic and.
for want of a better word, may be described as an

0167-2789 /86 /303.50 © Elsevier Science Publishers BV,

(North-Holland Physics Publishing Division)
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